

F. A. C. T (Field Agronomic Condition Test Environmental sensing) The Future of Agricultural and Conservation IOT

Authors: Will Krause (Presenter), Jake Bertish, Austin Jarrett, Chetan Jaiswal

Introduction

- Create low cost remote sensing device for agricultural purposes
- Use low cost hardware
- Utilize AWS cloud

Agricultural Issues Addressed

- Modern agriculture is a complicated activity
- Climate change is predicted to have large impacts on crop yield/nutritional quality
- Environmental data is difficult to collect
- Smart farming is the future

Specific Agricultural Problems

- Decreased yield and nutritional quality of food
- Phosphorus shortages
- Water use
- Environmental stresses
- Changing production landscape

Methodology

- Developed using Raspberry Pi R3, Elegoo uno microcontrollers, and assorted sensors
- Sensors collect data on soil Ph, moisture, temperature, humidity, and light intensity
- AWS cloud and GNUplot utilization

Top (from left to right): Raspberry Pi 3, Elegoo Uno Rev 3, Ph sensor. Bottom (from left to right): Light to Frequency Converter.) Temperature/Humidity sensor, Soil Moisture sensor.

Sensors Used		
Sensor Type	Sensor Model	Sensor Data
РН	DFRobot Analog PH Sensor	Data provided as PH
Light to Frequency	TSL235R	Photons measured in uW/cm2
Moisture	Atomic Market Soil Testing Module	Provided in a standardized percent, high percent is wet and low percent is dry.
T	DUT22	Temperature in Degrees Centigrade and
Temperature and Humidity	DHT22	Humidity in percent

Case 1 - Mobile device and internet access

Case 2 - Lack of immediate access to internet

- Performed at Truman State University greenhouse
- Tests performed to show environmental changes

• Light intensity varies by location and time of year

• Moisture levels will decrease over time

• Soil Ph is responsible for soil nutrient availability for plants

• Humidity plays a role in plant respiration.

 Temperature affects crop development and maturation

Maintenance

- Basic cleaning of Ph and moisture sensors
- Proper storage

Information Processing

• Same pathway for both use cases

Conclusion and Future Work

- Specialization of devices
- More sophisticated data processing
- Addition of GPS for mapping capabilities